Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 10 Science Chapter 9 Light Reflection and Refraction

ffImage
banner

NCERT Solutions for Class 10 Science Chapter 9 Light Reflection and Refraction - FREE PDF Download

NCERT Solutions for class 10 science chapter 9 Light Reflection and Refraction, provided by Vedantu, is a key resource for students who want to navigate the concepts of Science at the 10th-grade level. Students can go through the light reflection and refraction class 10 questions and answers PDF in which they will learn about the concepts of reflection and refraction.

toc-symbolTable of Content
toggle-arrow


The advantage of NCERT Solutions ch 9 science class 10 is its alignment with the latest NCERT Science syllabus. Students can learn about fundamental concepts of light. The solutions closely follow the CBSE Science class 10 syllabus and exam pattern. You can access the FREE PDF for light class 10 NCERT  solutions from this page. 


Glance on NCERT Solutions for Class 10 Science Chapter 9 Light Reflection and Refraction

  • Light reflection and refraction class 10 embarked on a fascinating journey to understand the fundamental concepts of reflection and refraction mechanisms and their various aspects. 

  • Students can access the light reflection and refraction class 10 questions and answers PDF to resolve all their doubts related to this chapter.

  • It is quite necessary to have at least a basic knowledge of Science, which may help you in the future. Light class 10 NCERT solutions are structured in a comprehensive and presentable way to provide students with complete coverage of the topics and scientific terms, which can help students score well in their exams and gain perspective towards career goals. 

  • Opting for ch 9 science class 10 can help a student ensure excellent exam performance. This free PDF contains solutions to all problems in light reflection and refraction class 10. 

  • Class 10 Science Chapter 9 is mostly about the reflection and refraction of light. The main topics included spherical mirrors, magnification, reflection, refraction, and lens power. Light Reflection and Refraction Class 10 Solutions include diagrams, logical problems, and detailed content in simple words to simplify simplification.

  • Reflection of Light Class 10 refers to light waves bouncing off the surface of objects that cannot absorb energy produced by radiation. For example, the surface of a pool will display the clarity of surrounding objects when still. Whereas all the rays would be scattered once a rock is thrown inside, preventing systematic light reflection.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions for Class 10 Science Chapter 9 Light Reflection and Refraction
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
Light Class 10 in One Shot Part -2 | Refraction CBSE Class 10 2023-24| Abhishek Sir @vedantucbse10th
11.1K likes
226.8K Views
3 years ago
Vedantu 9&10
Subscribe
Download Notes
iconShare
Light Class 10 in One Shot | Reflection Part -1 | CBSE Class 10 | Abhishek Sir @vedantucbse10th ​
27.4K likes
654.1K Views
3 years ago

Access NCERT Solutions for Class 10 Science Chapter 9 – Light Reflection and Refraction

1. What is the principal focus of a concave mirror? 

Ans: The light rays parallel to the principal axis converge at a point on the principal axis after reflecting from the concave mirror.

The point of convergence on the principal axis of a concave mirror is called the principal focus of a concave mirror. 


2. What is the focal length of a spherical mirror whose radius of curvature is $20cm$?

Ans: It is given that,

Radius of curvature of a spherical mirror, $R=20cm$ 

It is known that, 

Radius of curvature is twice the focal length.

$R=2f$ 

$\Rightarrow f=R/2$ 

$\Rightarrow f=\frac{20}{2}$

$\Rightarrow f=10cm$ 

Therefore, the focal length of a spherical mirror with the radius of curvature equal to $20cm$ is $f=10cm$.


3. Which mirror gives an erect and enlarged image of an object? 

Ans: If the object is placed between pole and the principal focus of a concave mirror the image formed is virtual, erect and enlarged.

Erect and enlarged images are not possible in case of convex or plane mirrors.


4. Why is convex mirror preferred as a rear-view mirror in vehicles?

Ans: If the objects are placed in front of a convex mirror, then the image formed is an erect and diminished image.

In vehicles we need erect images and we need to see as many areas as possible behind the vehicles.

So, a convex mirror is preferred as a rear-view mirror in vehicles.


5. What is the focal length of a convex mirror whose radius of curvature is $32cm$?

Ans: It is given that,

Radius of curvature of a convex mirror, $R=32cm$ 

It is known that, 

Radius of curvature is twice the focal length.

$R=2f$ 

$\Rightarrow f=R/2$ 

$\Rightarrow f=\frac{32}{2}$

$\Rightarrow f=16cm$ 

Therefore, the focal length of a convex mirror with the radius of curvature equal to $32cm$ is $f=16cm$.


6. Find the location of image for a concave mirror that produces three times magnified (enlarged) real image of the object placed at $10cm$ in front of it.

Ans: It is given that,

Distance of object in front of mirror, $u=-10cm$ (negative sign due to the location of the object in front of the mirror)

Distance of image from mirror, $v=?$

It is known that,

Magnification of a spherical mirror,$m=\frac{{{h}_{i}}}{{{h}_{o}}}=-\frac{v}{u}$ 

where,

${{h}_{i}}$ is the height of the image

${{h}_{o}}$ is the height of the object

Let, ${{h}_{o}}=h$ 

It is given that three times the enlarged real image of the object is produced.

So, ${{h}_{i}}=-3h$ ($-$ due to real image formation)

$\Rightarrow m=-\frac{3h}{h}=-\frac{v}{u}$ 

$\Rightarrow 3=\frac{v}{-10}$ 

$\Rightarrow v=-30cm$(negative sign due to the formation of inverted image)

Therefore, the location of image from the mirror is at a distance of $30cm$ and the nature of the image is inverted.


7. When a light ray travelling in the air enters obliquely into the water, how does it bend towards the normal or away from the normal? State reason.

Ans: When a light ray is travelling from the rarer medium to denser medium, it refracts towards the normal.

Here, the light ray bends towards the normal because the light ray is moving from air(rarer) to water(denser) medium. 


8. Find the speed of light in glass if the light enters from air to glass having a refractive index of $1.50$. Take the speed of light in vacuum, $c=3\times {{10}^{8}}m{{s}^{-1}}$ .

Ans:  It is given that,

Refractive index of glass,$\mu =1.50$ 

Speed of the light in vacuum, $c=3\times {{10}^{8}}m{{s}^{-1}}$

Speed of the light in glass,${{v}_{g}}=?$ 

It is known that,

$\mu =\frac{c}{{{v}_{g}}}$ 

$\Rightarrow 1.5=\frac{3\times {{10}^{8}}m{{s}^{-1}}}{{{v}_{g}}}$ 

$\Rightarrow {{v}_{g}}=\frac{3\times {{10}^{8}}}{1.5}$ 

$\Rightarrow {{v}_{g}}=2\times {{10}^{8}}m{{s}^{-1}}$

Therefore, the speed of light in glass is ${{v}_{g}}=2\times {{10}^{8}}m{{s}^{-1}}$ .


9. From the table, find the medium having the highest optical density and the lowest optical density.

Material medium

Refractive Index

Material medium

Refractive Index

Air

1.0003

Crown glass

1.52

Ice

1.31

Canada Balsam

1.53

Water

1.33

Rock salt

1.54

Alcohol

1.36

Carbon disulphide

1.63

Kerosene

1.44

Dense flint glass

1.65

Fused quartz

1.46

Ruby

1.71

Turpentine oil

1.47

Sapphire

1.77

Benzene

1.50

Diamond

2.42


Ans: To find the materials of highest and lowest optical densities check for its refractive index. The one with the highest refractive index will have the highest optical density and the one with lowest refractive index will have the lowest optical density.

The highest optical density is for Diamond i.e., $\mu =2.42$

The lowest optical density is for Air i.e.,$\mu =1.0003$


10. Among kerosene, turpentine oil and water in which medium does the light travel fastest? Refer to the table for refractive index.

Material Medium

Refractive Index

Material Medium

Refractive Index

Air

1.0003

Crown Glass

1.52

Ice

1.31

Canada Balsam

1.53

Water

1.33

Rock Salt

1.54

Alcohol

1.36

Carbon Disulphide

1.63

Kerosene

1.44

Dense Flint Glass

1.65

Fused Quartz

1.46

Ruby

1.71

Turpentine Oil

1.47

Sapphire

1.77

Benzene

1.50

Diamond

2.42


Ans: It is known that,

Absolute refractive index,$\mu =\frac{c}{{{v}_{m}}}$ 

where,

$c$ is the speed of light in vacuum$=3\times {{10}^{8}}m{{s}^{-1}}$ 

${{v}_{m}}$ is the speed of light in medium

$\Rightarrow \mu \propto \frac{1}{{{v}_{m}}}$ ($c$ is constant)

To compare the speed of light we compare the refractive index. Speed of light and refractive index are inversely proportional i.e., if the refractive index is more than the speed of light is less.

The order of refractive index among kerosene, turpentine oil and water is${{\mu }_{\ker osene}}>{{\mu }_{turpentineoil}}>{{\mu }_{water}}$ .

The order of speed of light becomes ${{\mu }_{\ker osene}}<{{\mu }_{turpentineoil}}<{{\mu }_{water}}$ .

Therefore, the speed of light is fastest in water.


11. What is the meaning of the statement “The refractive index of diamond is $2.42$”?

Ans: It is known that,

Refractive index of a medium,$\mu =\frac{c}{{{v}_{m}}}$ 

where,

$c$ is the speed of light in vacuum

${{v}_{m}}$ is the speed of light in medium

$2.42=\frac{c}{{{v}_{d}}}$

“The refractive index of diamond is $2.42$” means that the speed of light in vacuum is $2.42$ times the speed of light in diamond or the speed of light in diamond is $\frac{1}{2.42}$ times the speed of light in vacuum.


12. What is $1$ dioptre of power of a lens?

Ans: When $f$ is the focal length in metres of a lens with power $P$ then$P=\frac{1}{f(metres)}$ .

Dioptre is the S.I. unit of power of a lens and is denoted by $D$.

The power of a lens of focal length $1$ metre is defined as $1$ dioptre.


13. Image formed by a convex lens is real and inverted and at a distance of $50cm$from the lens. Find the position of the needle in front of the convex lens when the image is equal to the size of the object. Also, calculate the power of the lens.

Ans: It is given that,

Distance of image from convex lens,$v=50cm$

Distance of object in front of lens,$u=?$

The image formed is real and inverted. So, the magnification of the lens is $-1$.


Self-created

Image source: Self-created

It is known that, 

Magnification of a convex lens,$m=\frac{v}{u}$ 

$\Rightarrow -1=\frac{v}{u}$ 

$\Rightarrow -1=\frac{50}{u}$ 

$\Rightarrow u=-50cm$ 

Lens formula:$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$ 

$f$ is the focal length of the lens.

$\Rightarrow \frac{1}{f}=\frac{1}{50}-\frac{1}{(-50)}$ 

$\Rightarrow \frac{1}{f}=\frac{1}{50}+\frac{1}{50}$ 

$\Rightarrow \frac{1}{f}=\frac{2}{50}$ 

$\Rightarrow f=\frac{50}{2}$ 

$\Rightarrow f=25cm=0.25m$ 

It is known that,

Power of the lens,$P=\frac{1}{f(metres)}$ 

$\Rightarrow P=\frac{1}{(+0.25)}$ 

$\Rightarrow P=+4D$ 

Therefore, the object distance from the lens is $u=-50cm$ and power of the lens is $P=+4D$.


14. What is the power of a concave lens of focal length$2m$?

Ans: It is given that,

Focal length of a concave lens is,$f=-2m$ 

Power of the concave lens,$P=\frac{1}{f(metres)}$ 

$\Rightarrow P=\frac{1}{(-2)}$ 

$\Rightarrow P=-0.5D$ 

Therefore, the power of a concave lens is $P=-0.5D$.


15. Which one of the following materials cannot be used to make a lens?

  1. Water

  2. Glass

  3. Plastic

  4. Clay

Ans: d) Clay can’t be used to make a lens because it is opaque.


16. The image formed by a concave mirror is observed to be virtual, erect and larger than the object. Where should the position of the object be?

  1. Between the principal focus and the centre of curvature

  2. At the centre of curvature

  3. Beyond the centre of curvature

  4. Between the pole of the mirror and its principal focus.

Ans: d) The object is placed between the pole of the mirror and its principal focus when the image formed is virtual, erect and larger than the object in the concave mirror. 


concave mirror is observed


17. Where should an object be placed in front of a convex lens to get a real image of the size of the object? 

  1. At the principal focus of the lens 

  2. At twice the focal length 

  3. At infinity 

  4. Between the optical centre of the lens and its principal focus

Ans: b) An object should be placed at a distance of twice the focal length of a convex lens to get a real image of the size of the object. 


When object is placed at twice the focal length

18. A spherical mirror and a thin spherical lens have each a focal length of $-15cm$ . The mirror and the lens are likely to be

  1. Both concave 

  2. Both convex 

  3. The mirror is concave and the lens is convex 

  4. The mirror is convex, but the lens is concave 

Ans: a) For a concave lens the primary focus is on the same side as the object and is negative. In the case of a concave mirror, the focus is in front of the mirror and negative. Therefore, the mirror and lens are likely to be concave.


19. No matter how far you stand from a mirror, your image appears erect. The mirror is likely to be 

  1. Plane 

  2. Concave 

  3. Convex 

  4. Either plane or convex

Ans: d) Erect images are produced by both plane and convex mirrors for objects at any position.


20. Which of the following lenses would you prefer to use while reading small letters found in a dictionary?

  1. A convex lens of focal length \[\mathbf{50}\text{ }\mathbf{cm}\]

  2. A concave lens of focal length \[\mathbf{50}\text{ }\mathbf{cm}\]

  3. A convex lens of focal length \[\mathbf{5}\text{ }\mathbf{cm}\]

  4. A concave lens of focal length \[\mathbf{5}\text{ }\mathbf{cm}\]

Ans: a) When the object is placed between focus and optic centre, magnified and erect images are formed in a convex lens. So, while reading small letters a convex lens is preferred.

21. We wish to obtain an erect image of an object, using a concave mirror of focal length \[\mathbf{15}\text{ }\mathbf{cm}\]. What should be the range of distance of the object from the mirror? What is the nature of the image? Is the image larger or smaller than the object? Draw a ray diagram to show the image formation in this case.

Ans: To obtain an erect image in a concave mirror the object should be placed between Focus and the Optic centre.

Here, the focal length of the concave mirror is given as $15cm$.

Therefore, the range of distance of the object from the mirror is from $0cm$ to$15cm$.

The nature of the image is virtual.

The image is larger than the object. 


ray diagram to show the image formation

A virtual, erect and magnified image is formed.


22. Name the type of mirror used in the following situations and support your answer with reason.

  1. Headlights of a car

Ans: In the headlights of a car, a concave mirror is used. Because in concave mirrors a parallel beam of light is produced if the bulb is placed at the focus.

  1. Side/Rear-View Mirror of a Vehicle

Ans: In a side/rear-view mirror of a vehicle , a convex mirror is used. Because when objects are placed in front of the convex mirror, erect and diminished images are formed which gives a wider field of view.

  1. Solar Furnace

Ans: In solar furnaces, Concave mirrors are used. They converge sunlight to a point and produce high temperatures because of their converging properties.


23. One-half of a convex lens is covered with a black paper. Will this lens produce a complete image of the object? Verify your answer experimentally. Explain your observations.

Ans:  Yes, the lens produces a complete image of the object with less intensity.

Consider the following two cases:


when lower half of lens is covered with black paper

In the first case the lower half of the lens is covered with black paper. Light rays coming from the object are refracted only from the upper half and the image is formed, whereas in the lower half the light rays are blocked.


when upper half of lens is covered with black paper

In the second case the upper half of the lens is covered with black paper. Light rays coming from the object are refracted only from the lower half and the image is formed, whereas in the upper half the light rays are blocked.

Therefore, change in intensity of the image is observed i.e., the intensity of the image is less and the complete image is formed. 


24. An object of \[\mathbf{5}\text{ }\mathbf{cm}\] in length is held \[\mathbf{25}\text{ }\mathbf{cm}\] away from a converging lens of focal length \[\mathbf{10}\text{ }\mathbf{cm}\] . Draw the ray diagram and find the position, size and the nature of the image formed.

Ans: It is given that,

Height of the object,${{h}_{o}}=5cm$

Distance of object in front of lens,$u=-25cm$

Distance of image from lens,$v=?$

Focal length of the lens,$f=+10cm$ 

From lens formula:$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{f}+\frac{1}{u}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{10}-\frac{1}{25}$ 

$\Rightarrow \frac{1}{v}=\frac{25-10}{250}$ 

$\Rightarrow \frac{1}{v}=\frac{15}{250}$ 

$\Rightarrow v=\frac{250}{15}$ 

$\Rightarrow v=16.66cm$ 

The positive value of $v$ indicates that the image and the object are on opposite sides.

It is known that,

Magnification ,$m=\frac{{{h}_{i}}}{{{h}_{o}}}=-\frac{v}{u}$ 

Height of the image, ${{h}_{i}}=?$ 

$\Rightarrow m=\frac{{{h}_{i}}}{5}=-\frac{16.66}{25}=-0.66$ 

$\Rightarrow {{h}_{i}}=-0.66\times 5$ 

$\Rightarrow {{h}_{i}}=-3.3cm$


convex lens

As the magnification is $-0.66$, the negative sign indicates that the object is inverted and less than $1$ indicates that the image is smaller than the object.

Therefore, the position of the image is $16.66cm$ from the lens. The height of the object is $3.3cm$. The nature of the image is real, inverted and diminished.


25. A concave lens of focal length \[\mathbf{15}\text{ }\mathbf{cm}\] forms an image \[\mathbf{10}\text{ }\mathbf{cm}\] from the lens. Find the distance of an object from the lens? Draw the ray diagram.

Ans: It is given that, 

Focal length of the lens,$f=-15cm$ 

Distance of image from lens,$v=-10cm$

Distance of object in front of lens,$u=?$

From lens formula:$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$ 

$\Rightarrow \frac{1}{u}=\frac{1}{v}-\frac{1}{f}$ 

$\Rightarrow \frac{1}{u}=\frac{1}{(-10)}-\frac{1}{(-15)}$ 

$\Rightarrow \frac{1}{u}=\frac{-1}{10}+\frac{1}{15}$ 

$\Rightarrow \frac{1}{u}=\frac{-5}{150}$ 

$\Rightarrow u=-\frac{150}{5}$ 

$\Rightarrow u=-30cm$ 


concave lens

Thus, the object is at a distance of $30cm$ from the lens.


26. An object is placed at a distance of \[\mathbf{10}\text{ }\mathbf{cm}\] from a convex mirror of focal length \[\mathbf{15}\text{ }\mathbf{cm}\] . Find the position and nature of the image. 

Ans: It is given that,

Focal length of the convex mirror,$f=+15cm$ 

Distance of object in front of convex mirror,$u=-10cm$

Distance of image from convex mirror,$v=?$

From mirror formula:$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{f}-\frac{1}{u}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{15}-\frac{1}{(-10)}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{15}+\frac{1}{10}$ 

$\Rightarrow \frac{1}{v}=\frac{25}{150}$ 

$\Rightarrow v=\frac{150}{25}$ 

$\Rightarrow v=6cm$ 

The positive value of $v$ indicates that the image is formed behind the mirror and virtual.

It is known that,

Magnification ,$m=\frac{{{h}_{i}}}{{{h}_{o}}}=-\frac{v}{u}$ 

$\Rightarrow m=\frac{-6}{-10}=+0.6$ 

The positive magnification indicates that the image is erect. As magnification is less than $1$ it indicates that the image is smaller than the object.

Therefore, the position of image is $6cm$ behind the mirror. Nature of image is virtual, erect and diminished.


27. What does “The magnification produced by a plane mirror is \[+1\] ” mean?

Ans: It is known that,

Magnification produced by a plane mirror is,$m=\frac{{{h}_{i}}}{{{h}_{o}}}=-\frac{v}{u}$ 

where,

${{h}_{i}}$ is the height of the image

${{h}_{o}}$ is the height of the object

$u$ is the distance of the object in front of lens

$v$ is the distance of image from lens

Magnification produced by a plane mirror is $+1$ means that ${{h}_{i}}={{h}_{o}}$ that is the size of the image is the same as the size of the object. The positive size indicates that the image is erect.

Therefore, magnification equal to $+1$ means that the size of the image is the same as object and erect.


28. An object \[\mathbf{5}\text{ }\mathbf{cm}\] in length is placed at a distance of \[\mathbf{20}\text{ }\mathbf{cm}\]in front of a convex mirror of radius of curvature\[\mathbf{30}\text{ }\mathbf{cm}\] . Find the position of the image, its nature and size. 

Ans: It is given that,

Distance of object in front of the mirror,$u=-20cm$

Distance of image from the mirror,$v=?$

The radius of curvature of the mirror,$R=30cm$

The focal length of the mirror,$f=?$ 

It is known that,

Radius of curvature is equal to twice the focal length.

$\Rightarrow R=2f$ 

$\Rightarrow 30=2f$ 

$f=\frac{30}{2}=15cm$ 

From mirror formula:$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{f}-\frac{1}{u}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{15}-\frac{1}{(-20)}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{15}+\frac{1}{20}$

$\Rightarrow \frac{1}{v}=\frac{20+15}{300}$ 

$\Rightarrow \frac{1}{v}=\frac{35}{300}$ 

$\Rightarrow v=\frac{60}{7}$ 

$\Rightarrow v=8.57cm$ 

The positive value of $v$ indicates that the image is formed behind the mirror.

It is known that,

Magnification ,$m=\frac{{{h}_{i}}}{{{h}_{o}}}=-\frac{v}{u}$ 

Height of the object, ${{h}_{o}}=5cm$

Height of the image, ${{h}_{i}}=?$ 

$\Rightarrow {{h}_{i}}=-\frac{v}{u}\times {{h}_{o}}$ 

$\Rightarrow {{h}_{i}}=-\frac{8.57}{(-20)}\times 5$ 

$\Rightarrow {{h}_{i}}=2.14cm$

Therefore, the image is formed at a distance of \[8.57cm\]behind the mirror. The nature of the image is virtual, erect and diminished.


29. An object of size \[\mathbf{7}.\mathbf{0}\text{ }\mathbf{cm}\] is placed at \[\mathbf{27}\text{ }\mathbf{cm}\] in front of a concave mirror of focal length \[\mathbf{18}\text{ }\mathbf{cm}\] . At what distance from the mirror should a screen be placed, so that a sharp focused image can be obtained? Find the size and the nature of the image.

Ans: It is given that,

Distance of object in front of mirror,$u=-27cm$

Distance of image from the mirror,$v=?$

Focal length of the mirror,$f=-18cm$ 

From mirror formula:$\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{f}-\frac{1}{u}$ 

$\Rightarrow \frac{1}{v}=\frac{1}{-18}-\frac{1}{(-27)}$ 

$\Rightarrow \frac{1}{v}=-\frac{1}{18}+\frac{1}{27}$

$\Rightarrow \frac{1}{v}=\frac{-3+2}{54}$ 

$\Rightarrow \frac{1}{v}=-\frac{1}{54}$ 

$\Rightarrow v=-54cm$ 

The negative value of $v$ indicates that the screen should be placed at a distance of  $54cm$ in front of the mirror and the image is real.

It is known that,

Magnification ,$m=\frac{{{h}_{i}}}{{{h}_{o}}}=-\frac{v}{u}$ 

Height of the object, ${{h}_{o}}=7cm$

Height of the image, ${{h}_{i}}=?$ 

$\Rightarrow {{h}_{i}}=-\frac{v}{u}\times {{h}_{o}}$ 

$\Rightarrow {{h}_{i}}=-\frac{-54}{(-27)}\times 7$

$\Rightarrow {{h}_{i}}=-14cm$

The height of image is \[14cm\].

Therefore, the image is formed at a distance of \[54cm\]in front of the mirror. Nature of image is real, inverted and enlarged.


30. Find the focal length of a lens of power\[-\mathbf{2}.\mathbf{0}\text{ }\mathbf{D}\] . What type of lens is this?

Ans: It is given that,

Power of a lens,$P=-2.0D$ 

Focal length of a lens, $f=?$ 

Power of a lens,$P=\frac{1}{f(metres)}$ 

$\Rightarrow -2=\frac{1}{f}$ 

$\Rightarrow f=-\frac{1}{2}=-0.5m$ 

Negative $f$ indicates concave lens.

Therefore, the focal length of lens is $f=-0.5m$and the lens is concave.


31. A doctor has prescribed a corrective lens of power \[+\mathbf{1}.\mathbf{5}\text{ }\mathbf{D}\]. Find the focal length of the lens. Is the prescribed lens diverging or converging?

Ans: It is given that,

Power of a lens,$P=+1.5D$ 

Focal length of a lens, $f=?$ 

Power of a lens,$P=\frac{1}{f(metres)}$ 

$\Rightarrow 1.5=\frac{1}{f}$ 

$\Rightarrow f=\frac{1}{1.5}=0.66m$ 

Positive $f$ indicates a convex lens.

Therefore, the focal length of lens is $f=0.66m$ and the lens prescribed is a diverging lens.


Topics Covered In Class 10 Science Chapter 9 Light Reflection and Refraction

List of Topics Covered in Science Chapter 9 Class 10

Topics

Subtopics

Reflection of Light


Spherical Mirrors

Image formation by spherical mirrors, Representation using Ray Diagrams, Sign Convention, Mirror Formulas and Magnification

Refraction of Light

Reflection through a rectangular glass slab, The Refractive Index, Refraction by spherical lenses, Image formation using Ray diagrams, Sign convention, Lens formula, and magnification. Power of  a Lens


Key Features of Light Reflection and Refraction Class 10 NCERT Solutions

Class 10th science chapter 9 question answer offers great opportunities for students to achieve maximum marks. To do so, students must have a good understanding of the concepts of this chapter, which is duly sufficient by NCERT Solutions for Class 10 Science Chapter 9. The main benefits of these NCERT Solutions are given below:

  • Light reflection and refraction class 10 questions and answers PDF are given by faculties who are specialists in this field and have excellent experience. The solutions they created are exact and will help you get good test marks.

  • The solutions to various questions in this chapter are clarified with charts and viable diagrams with regard to an easy understanding of students.

  • Step-by-step derivation and application of the mirror formula for concave and convex mirrors.

  • The solutions are designed and created keeping in mind one of the main objectives of helping students in obtaining high marks.

  • Detailed steps and diagrams explain light's refraction through a glass slab and the concept of lateral displacement.

  • Explanation of the working principles of optical instruments such as microscopes and telescopes.

  • The solutions are available for free download in PDF format, allowing students to access them offline at their convenience. The user-friendly format ensures easy navigation through the document.


Important Study Material Links for Class 10 Science Chapter 9


Conclusion

Class 10 science chapter 9 question-answer solutions provide students with simple and detailed definitions and explanations of each concept covered in the chapter. Therefore, it is highly recommended that students download and refer to our comprehensive and expert-curated light class 10 NCERT solutions to get a gist of the chapter before the exam and to know how to answer the questions in the exam. Students can also refer to our plethora of other study resources related to this chapter, which are available for free on our website and mobile app.


FREE PDF Links for Other Chapter-wise NCERT Solutions Class 10 Science 

You can also access chapter-wise NCERT Solutions for all other chapters of Class 10 Science from the links below and kick-start your preparation for Class 10 Board exams.



Related Links for Class 10 Science

WhatsApp Banner
Best Seller - Grade 10
View More>
Previous
Next

FAQs on NCERT Solutions for Class 10 Science Chapter 9 Light Reflection and Refraction

1. What is the principal focus of a concave mirror as explained in the NCERT Solutions for Class 10 Science Chapter 9?

The principal focus of a concave mirror is the point on the principal axis where all light rays parallel to the principal axis, after reflection from the mirror, converge. This aligns with the CBSE 2025–26 syllabus on mirror concepts.

2. How do you compute the focal length of a spherical mirror if its radius of curvature is known, according to NCERT Solutions for Class 10 Science Chapter 9?

  • The focal length (f) of a spherical mirror is half of its radius of curvature (R).
  • Formula: f = R / 2
  • Example: If R = 20 cm, then f = 10 cm.

3. Why are convex mirrors preferred as rear-view mirrors in vehicles, as per the Class 10 Science NCERT Solutions?

Convex mirrors are preferred for rear-view mirrors because they always form erect, diminished images, thus offering a wider field of view. This lets the driver see more area behind the vehicle—precisely as per CBSE board guidelines.

4. What happens to a light ray when it passes from air into water, according to NCERT Solutions for Chapter 9 Science Class 10?

When a light ray travels from air (a rarer medium) into water (a denser medium), it bends towards the normal due to slowing down, as stated in the laws of refraction.

5. FUQ: How is magnification defined for spherical mirrors, and what does a negative magnification indicate as per the NCERT Class 10 Science Chapter 9?

  • Magnification (m) is the ratio of the height of image to the height of object, m = hi/ho or m = -v/u.
  • A negative magnification means the image is real and inverted.

6. What does it mean if the refractive index of diamond is 2.42, as explained in the NCERT Solutions for Light Reflection and Refraction?

If the refractive index of diamond is 2.42, it means that light travels 2.42 times slower in diamond than in vacuum, as per Class 10 CBSE Science Chapter 9.

7. FUQ: If half of a convex lens is obscured, will a complete image still be formed? Explain as per NCERT Class 10 Science guidelines.

Yes, even if half a convex lens is covered, a complete image of the object will still form but with reduced brightness or intensity. Each part of the lens can refract rays from all parts of the object.

8. How is the power of a lens related to its focal length, as per NCERT Solutions for Class 10 Science Chapter 9?

The power (P) of a lens is the reciprocal of its focal length (in metres): P = 1/f. Power is measured in dioptres (D).

9. FUQ: In what situation does a concave mirror produce an enlarged, virtual, and erect image as per NCERT Class 10 Science Solutions?

A concave mirror forms an enlarged, virtual, and erect image when the object is placed between the mirror's pole and its principal focus. This is a common exam-value point in CBSE patterns.

10. Which medium allows light to travel fastest among water, kerosene, and turpentine oil, according to refractive index values in NCERT Solutions?

Light travels fastest in water among the three options, since water has the lowest refractive index (μ = 1.33), meaning less optical density than kerosene or turpentine oil.

11. FUQ: What is lateral displacement in the context of light refraction through a rectangular glass slab (as explained in Class 10 Science NCERT Solutions)?

Lateral displacement refers to the sideways shift of the light ray as it emerges from the opposite face of a glass slab compared to its straight-line path. This occurs due to the change in direction of light as it enters and exits the medium at different points, as per CBSE guidelines.

12. What is meant by 1 dioptre of lens power, as per Science Class 10 Chapter 9 Solutions?

  • 1 dioptre (D) is the power of a lens with a focal length of 1 metre.
  • It is the SI unit of lens power, used in optics calculations in CBSE Class 10 Science examinations.

13. FUQ: How does the sign convention work for focal length and image formation in spherical mirrors and lenses, as per CBSE Class 10 Science syllabus?

  • For mirrors: Focal length (f) is negative for concave and positive for convex mirrors.
  • For lenses: Focal length is positive for convex (converging), negative for concave (diverging) lenses.
  • The image position is measured from the optic centre (lenses) or pole (mirrors), following the Cartesian sign convention.

14. FUQ: What if an object is placed at twice the focal length (2f) of a convex lens? Describe the nature and size of the image as per NCERT Class 10 Science guidelines.

If an object is placed at 2f from a convex lens, the image formed is real, inverted, and of the same size as the object. The image appears at 2f on the opposite side of the lens—an important case often stressed in board pattern questions.

15. According to Class 10 Science NCERT Solutions, which material cannot be used to make a lens: water, glass, plastic, or clay? Why?

Clay cannot be used to make a lens because it is opaque, preventing light from passing through and forming an image. Only transparent materials like glass, plastic, or even water can be used for lens construction.